分數的基本性質教學設計(推薦)
作為一名為他人授業解惑的教育工作者,就難以避免地要準備教學設計,教學設計是實現教學目標的計劃性和決策性活動。那么問題來了,教學設計應該怎么寫?下面是小編整理的分數的基本性質教學設計,歡迎閱讀,希望大家能夠喜歡。
分數的基本性質教學設計1
一、教學目標
1.經歷探索分數基本性質的過程,理解分數的基本性質。
2.能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。
3.經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣。
二、 教學重、難點
教學重點是:分數的基本性質。
教學難點是:對分數的基本性質的理解。
三、教學方法
采用了動手做一做、觀察、比較、歸納和直觀演示的方法
四、教學過程
(一)、故事引入,揭示課題
1.教師講故事。
猴山上的猴子最喜歡吃猴王做的餅了。有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊。”猴王就把第二塊餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切成十二塊,分給猴3三塊。小朋友,你知道哪只猴子分得多嗎?
討論:哪只猴子分得的多?讓學生發表自己的意見,教師出示三塊大小一樣的餅,通過師生分餅、觀察和驗證,得出結論:三只猴子分得的餅一樣多。
引導:聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學們想知道嗎?學習了“分數的基本性質”就清楚了。(板書課題)
2.組織討論。
(1)既然三只猴子分得的餅同樣多,那么表示它們分得餅的分數是什么關系呢?這三個分數什么變了,什么沒有變?讓學生小組討論后答出:這三個分數是相等關系,14=28=312,它們平均分的份數和表示的份數也就是分數的分子和分母變化了,但分數的大小不變。
(2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數嗎?通過觀察演示得出:34=68=912。
(3)我們班有40名同學,分成了四組,每組10人。那么第一、二組學生的人數占全班學生人數的幾分之幾?引導學生用不同的分數表示,然后得出:12=24=20xx。
3.引入新課:黑板上三組相等的分數有什么共同的特點?學生回答后板書:
分數的分子和分母變化了,
分數的大小不變。
它們各是按照什么規律變化的呢?我們今天就來共同研究這個變化規律。
( 二)、比較歸納,揭示規律
1.出示思考題。
比較每組分數的分子和分母:
(1)從左往右看,是按照什么規律變化的?
(2)從右往左看,又是按照什么規律變化的?
讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。
2.集體討論,歸納性質。
(1)從左往右看,由34到68,分子、分母是怎么變化的?引導學生回答出:把34的分子、分母都乘以2,就得到68。原來把單位“1”平均分成4份,表示這樣的3份,現在把分的份數和表示份數都擴大2倍,就得到68。
板書:
(2)34是怎樣變化成912的呢? 怎么填?學生回答后填空。
(3)引導口述:34的分子、分母都乘以2,得到68,分數的大小不變。
(4)在其它幾組分數中,分子、分母的變化規律怎樣?幾名學生回答后,要求學生試著歸納變化規律:分數的分子和分母都乘以相同的數,分數的大小不變。
(板書:都乘以
相同的數)
(5)從右往左看,分數的分子和分母又是按照什么規律變化的?通過分析比較每組分數的分子和分母,得出:分數的分子和分母都除以相同的數,分數的.大小不變。
(板書:都除以)
(6)引導思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二個“都”字,換成“或者”)再對照教科書中的分數基本性質,讓學生說出少了什么?(少了“零除外”)討論:為什么性質中要規定“零除外”?
(板書:零除外)
(7)齊讀分數的基本性質。先讓學生找出性質中關鍵的字、詞,如“都”、“相同的數”、“零除外”等。然后要求關鍵的字詞要重讀。師生共同讀出黑板上板書的分數基本性質。
3.出示例2:把12和1024化成分母是12而大小不變的分數。
思考:要把12和1024化成分母是12而大小不變的分數,分子、分母怎么變化?變化的依據是什么?
4.討論:猴王運用什么規律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?
5.質疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。
( 三)、溝通說明,揭示聯系
通過舉例,溝通分數的基本性質與商不變性質之間的聯系。引導學生運用分數與除數的關系,以及整數除法中商不變的性質,說明分數的基本性質。
如:34=3÷4=(3×3)÷(4×3)=9÷12=912
( 四)、多層練習,鞏固深化
1.口答。(學生口答后,要求說出是怎樣想的?)
2.判斷對錯,并說明理由。(運用反饋片判斷,錯的要求說明與分數的基本性質中哪幾個字不相符。)
教學反思:
學生是學習的主人,教師是數學學習的組織者、引導者與合作者。因此數學課堂教學中必須把教師的教變成學生的學,必須深入研究學法,建立探究式的學習模式。教師應調動學生的學習積極性,向學生提供充分從事數學學習的機會,幫助他們在自主觀察、討論、合作、探究學習中真正理解和掌握基本的數學知識和技能,充分發揮學生的能動性和創造性。《分數的基本性質》的教學設計一個突出的特點就是學法的設計,從大膽猜想、實驗感知、觀察討論到概括總結,完全是為學生自主探究、合作交流的學習而設計的。具體表現在:
1、學生在故事情境中大膽猜想。
通過創設“猴王分餅”的故事,讓學生猜測一組三個分數的大小關系,為自主探索研究“分數的基本性質”作必要的鋪墊,同時又很好地激發了學生的學習熱情。
2、學生在自主探索中科學驗證。
在學生大膽猜想的基礎上,教師適時揭示猜想內容,并對學生的猜想提出質疑,激發學生主動探究的欲望。在探索“分數的基本性質”和驗證性質時,通過創設自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結論的正確性,突現出課堂教學以學生為本的特性。整個教學過程以“猜想——驗證——完善”為主線,每一步教學,都強調學生自主參與,通過規律讓學生自主發現、方法讓學生自主尋找、思路讓學生自主探索,問題讓學生自主解決,使學生獲得成功的體驗,增強自信心。
3、讓學生在分層練習中鞏固深化。
在練習的設計上,力求緊扣重點,做到新穎、多樣、層次分明,有坡度。第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3題是在第1、2題的基礎上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題通過游戲,加深學生對分數的基本性質的認識,激發學生學習的興趣,活躍課堂氣氛。這樣不僅能照顧到學生思維發展的過程,而且有效拓寬了學生的思維空間,真正做到了學以致用。
反思教學的主要過程,覺得在讓學生用各種方法驗證結論的正確性的時候,拓展得不夠,要放開手讓學生尋找多種途徑去驗證,而不能局限于老師提供的幾種方法。因為數學教學并不是要求教師教給學生問題的答案,而是教給學生思維的方法。
分數的基本性質教學設計2
1.教材簡析
《分數的基本性質》是蘇教版小學數學教材第十冊的內容之一,在小學數學學習中起著承前啟后、舉足輕重的作用,它既與整數除法的商不變性質有著內在的聯系,也是后面進一步學習分數的計算、比的基本性質的基礎。分數的基本性質是一種規律性知識,分數的分子分母變了,分數的大小會變嗎?分數的分子分母如何變化,分數的大小不變呢?學生在這種“變”與“不變”中發現規律。
2.教材處理
以前,教師通常把《分數的基本性質》看作一種靜態的數學知識,教學時先用幾個例子讓學生較快地概括出規律,然后更多地通過精心設計的練習鞏固應用規律,著眼于規律的結論和應用。隨著課程改革的深入,教師們越來越重視學生獲取知識的過程,但我們也看到這樣的現象:問題較碎,步子較小,放手不夠,探究的過程體現不夠充分。《分數的基本性質》可不可以有別的教學思路呢?新的課程標準提出:“教師應向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法”。根據這一新的理念,我認為教師可以為學生創設一種大問題背景下的探索活動,使學生在一種動態的探索過程中自己發現分數的基本性質,從而體驗發現真理的曲折和快樂,感受數學的思想方法,體會科學的學習方法。所以,教師的著眼點,不能只是規律的結論和應用,而應有意識地突出思想和方法。基于以上思考,我以讓學生探究發現分數基本性質的過程為教學重點,創設了一種“猜想——驗證——反思”的教學模式,以“猜想”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證猜想——質疑討論、完善猜想等,把這一系列探究過程放大,把過程性目標”凸顯出來。
設計意圖:
本課主要本著遵循小學數學課程標準“創設問題情境提出問題解決問題建立數學模型解釋數學模型運用數學模型拓展數學模型”的指導思想而設計的。
1、通過故事創設問題情境,貼近學生生活,有利于激發學生學習興趣。
2、從故事情境中提出問題,體現數學來源于生活。
3、小組合作學習,共同探究解決問題,讓學生充分體驗知識產生的過程。
4、從幾組分數中分析,找到分數的基本性質,從而初步建立數學模型。
5、設計有坡度的練習,穿插師生互動,生生互動,讓整個運用知識的形式活潑有趣。、
6、在游戲活動中對數學知識進行拓展運用。
教學目標
1.知識與技能
(1)經歷探索分數的基本性質的過程,理解分數的基本性質。
(2)能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。
2.過程與方法
(1) 經歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分數的基本性質作出簡要的、合理的說明。
(2) 培養學生的觀察、比較、歸納、總結概括能力。
(3)能根據解決問題的需要,收集有用的信息進行歸納,發展學生的歸納、推理能力。
3.情感態度與價值觀
(1)經歷觀察、操作和討論等數學學習活動,使學生進一步體驗數學學習的樂趣。
(2)體驗數學與日常生活密切相關。
教學重點
理解分數的基本性質
教學難點
能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數
教學準備
師:電腦課件 學生:圓紙片 長方形紙
教學步驟:
一、故事引人,揭示課題。
1.教師講故事。
話說唐僧師徒四人去西天去取經,這天走在路上,唐僧感覺餓了,就叫孫悟空去化齋,孫悟空答應了聲駕起筋斗云走了,不一會,他就帶回了三塊一樣大的餅,唐僧說:三塊餅,我們四個人怎么吃呢?孫悟空說:“你分給我一塊餅的四分之一就行了” 唐僧就把第一塊餅平均分成四塊,給了一塊給孫悟空。沙僧說:“我想要兩塊”
唐僧把第二塊餅平均分成八塊,給了2塊給沙僧。豬八戒比較貪心,他說:“我要三塊,我要三塊”,于是唐僧把第三塊餅又平均分成12塊,給了豬八戒3塊。同學們,你知道孫悟空、豬八戒、沙僧三人誰分的多嗎?
[ 一上課,先聽講一段故事,學生非常樂意,并會立即被吸引。思考故事當中提出的.問題,學生自然興趣濃厚。通過故事設疑,激起了學生探求新知的欲望。]
2、組織討論,動手操作。
(1)小組討論,誰分的多
(2)拿出三張紙,分別涂出它們的1/4、2/8、3/12。
(3)比較涂色部分的大小,有什么發現,得出什么結論。
既然他們三個分得的餅同樣多,那么表示它們分得餅的分數是什么關系呢?這三個分數什么變了,什么沒有變?讓學生小組討論后答出:這三個分數是相等關系,1/4=2/8=3/12,它們平均分的份數和表示的份數也就是分數的分子和分母變化了,但分數的大小不變。
(4)教師演示
3、教學例1
(1)引導比較。
師問:這四個分數,為什么分母不同呢?前兩個分數的分子為什么都是1?
你知道其中哪些分數是相等的嗎?
根據學生回答板書:1/3=2/6=3/9
師追問:你是怎么知道這三個分數相等的?(圖中觀察出來的)
(2)師演示驗證大小。
(3)完成“練一練”第1題
學生先涂色表示已知分數,再在右圖中涂出相等部分。
完成填空后,說說怎么想的。
4、教學例2。
(1)組織操作。
師:取出正方形紙,先對折,用涂色部分表示它的1/2。
學生完成折紙、涂色。
師問:你能通過繼續對折,找出和1/2相等的其它分數嗎?
學生在小組中操作,教師巡視指導。
學生展開折法并匯報,可能出現的方法有:
連續對折兩次,平均分成4份。如圖:
1/2=1/4
②連續對折三次,平均分成8份。如圖:
1/2=4/8
③連續對折四次,平均分成16份。
師追問:每次對折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分數表示?
得到的這些分數與1/2相等嗎?能不能再寫一些與1/2相等的數?
板書:1/2=2/4=4/8=8/16=16/32……
(2)發現規律。
師:你有什么發現?(如學生觀察有困難,可進行以下提示)
①、從左往右看,它們的分子、分母是怎樣變化的?你有什么發現?
學生觀察、思考,在小組中交流。
師問:觀察例1中的1/3=2/6=3/9,有這樣的規律嗎?
分數的基本性質教學設計3
教學內容:蘇教版小學數學第十冊第95頁至97頁。
教學目標:
知識目標:通過教學使學生理解和掌握分數的基本性質,能利用它改變分數的分子和分母,而使分數的大小不變。
能力目標:培養學生的觀察能力、動手操作能力和分析概括能力等。
情感目標:讓學生在學習過程當中養成互相幫助、團結協作的良好品德。
教學準備:圓形紙片、彩筆、各種卡片。
教學過程:
一、創設情境,激發興趣
孫悟空有3根一模一樣的甘蔗,小猴子貝貝、佳佳、丁丁看見了,一哄而上,叫嚷著要吃甘蔗。孫悟空說: “好,貝貝分第一根甘蔗的,佳佳分第二根甘蔗的,丁丁分第三根甘蔗的。”貝貝、佳佳聽了,連忙說:“孫大圣,不公平,我們要分得和丁丁的同樣多。”孫悟空真的分得不公平嗎?(學生思考片刻)
【通過學生耳熟能詳的人物對話,給學生設計一個懸念,抓住學生的好奇心理,由此激發學生的學習興趣。】
二、動手操作 、導入新課
師:我們也來分分看。(學生拿出準備好的圓形紙片。)師:我們把三張紙片看成三塊餅,大家比比看,每人的三塊餅大小相等嗎?請拿出第一塊餅,我想要一塊,而且大小要是第一塊餅的一半,你能做到嗎?你給我的為什么是這塊餅的一半呢?用分數怎么表示呢?我現在想要兩塊,而且大小要跟剛才給我的餅一樣大,你又能做到嗎?用分數怎樣表示呢?我如果想要四塊,大小跟前兩次給我的一樣,你還能做到嗎?這次用分數又該怎樣表示呢?這三個分數大小相等嗎?為什么呢?這節課,我們就來研究這個數學問題。
【通過學生的動手操作,初步感知三個分數的大小相等,為尋找原因設置懸念,再次激發學生的學習興趣。】
三、觀察對比, 由“數”變 “式”
你們三次給我的餅大小相等嗎?那么這三個分數大小怎樣?可以用怎樣的式子表示?(==)(從這里你能看出,孫悟空分甘蔗,分得公平嗎?)
四、概括分析,由“式”變 “語”
⒈觀察一下這個式子,3個分數有什么不同?有什么地方相同?分數的大小為什么會不變呢?要弄清楚這個問題,我們必須先研究分數的分子、分母是怎樣變化的。
⒉先從左往右看,是怎樣變為與它相等的的?
(1)分母乘2,分子乘2。
根據分數的意義,""表示把單位"1"平均分成2份,取其中的1份,而現在把單位"1"平均分成4份,也就是把原兩份中的每一份又平均分成2份, 所以現在平均分成了2×2=4(份),現在要得跟原來的同樣多,必須取幾份?[1×2=2(份)]==
即原來把單位"1"平均分成2份,取1份,現在把平均分的份數和取的`份數都擴大2倍,就得到。與的大小相等,分數值沒變。
(2)由到,分子、分母又是怎樣變化的?(把平均分的份數和取的份數都擴大了4倍。)==
(3)誰能用一句話說出這兩個式子的變化規律?
⒊再從右往左看
(1) 是怎樣變化成與之相等的的?
原來把單位"1"平均分成4份,取其中的2份,現在把同樣的單位"1"平均分成2份,即把原來的每兩份合并成 1份,現在要取得跟原來的同樣多,只需取幾份?[2÷2=1(份)]也就是現在把平均分的份數和取的份數都縮小了2倍,得到,分數的大小沒有變。
==
(2) 又是怎樣變成的?(把平均分的份數和取的份數都縮小了4倍。)
==
(3)誰能用一句話說出這兩個式子的變化規律?
⒋綜合以上兩種變化情況,誰能用一句話概括出其中的規律?你覺得有什么要補充的嗎?(不能同時乘或除以0)為什么?
⒌這就是今天我們所學的“分數的基本性質”(板書課題,出示“分數的基本性質”)。
(1)理解概念。
學生讀一遍,你認為哪幾個字特別重要?(相同的數、0除外)相同的數,指一些什么數?為什么零除外?
(2)瘃木鳥診所。(請說出理由)
分數的分子和分母同時乘或者除以相同的數,分數的大小不變。( )
分數的分子和分母同時乘或者除以一個數(零除外),分數的大小不變。( )
分數的分子和分母同時乘或者除以相同的數(零除外),分數的大小不變。( )
⒍小結。
從判斷題中我們可以看出,分數的基本性質要注意什么?學到這兒,大家想一想,我們以前學過的什么性質跟分數的基本性質類似?誰能用整數除法中商不變的性質來說明分數的基本性質?
【此過程主要由學生通過觀察、比較,得出這三個分數大小相等的規律,由此牽引到其他的有同等規律的分數中,從而引出分數的基本性質:分子、分母是同時變化的,是同向變化的(是擴大都擴大,是縮小都縮小),是同倍變化的(擴大或縮小的倍數相同)。只有這樣變化,分數的大小才不會變。】
五、鞏固練習
⒈卡片練習:
⒉做P96“練一練”1、2。
⒊趣味游戲:
數學王國開音樂會,分數大家族的節目是女聲大合唱,只有幾分鐘就要演出了,請大家趕緊幫合唱隊的成員按要求排好隊。
要求:第一排是分數值等于的,第二排是分數值等于的,還有一位同學是指揮,他是誰?你是怎樣想的?
【通過練習,讓學生加深對分數的基本性質的理解,為下節課分數的基本性質的應用打好堅實的基礎。】
六、課堂總結
這節課你學到了什么?什么是分數的基本性質?你是怎樣理解的?
七、布置作業
做P97練習十八2。
分數的基本性質教學設計4
教學目標:
知識與技能:掌握分數的基本性質對于學生來說非常重要。分數的基本性質包括:分數的大小與分子、分母的關系,分數的化簡和擴大,分數的比較大小等。通過學習分數的基本性質,可以幫助學生更好地理解和運用分數,提高他們的數學能力。同時,分數的基本性質與整數除法中商不變性質有著密切的關系,這也有助于學生對整數除法的理解和運用。在學習中,學生需要掌握如何將一個分數化簡為分母相同而大小不變的分數。這需要學生觀察比較分數的大小,抽象概括規律,并進行實際操作。通過這樣的練習,可以培養學生的邏輯思維能力和數學解決問題的能力。因此,學生在學習分數的基本性質時,應注重理解概念,掌握方法,多進行練習,提高自己的數學素養。
過程與方法:
在探索分數基本性質的過程中,我們體會到了數學思想方法中的“變與不變”以及“轉化”的重要性。這個過程激發了我們的求知欲,也讓我們體會到了數學思維的樂趣。通過互相交流和合作,我們不僅增進了對分數的理解,還培養了團隊合作的意識。這種積極主動的學習態度將成為我們探索更多數學知識的動力,讓我們更加享受數學帶來的樂趣。
教學重點:
理解和掌握分數的基本性質,會運用分數的基本性質。
教學難點:
自主探究出分數的基本性質
教學準備:
PPT課件、每小組準備三個同樣大小的圓形紙片、三張完全一樣的長方形(正方形)紙、直尺、彩筆等。
教學流程:
一、故事導入激趣引思
引言:好的,我來修改一下:大家是否能猜出剛剛老師播放的是哪首經典動畫片的主題曲呢?沒錯,我們今天的學習將從中國古典名著《西游記》的故事開始。
講故事:唐僧師徒四人行至一村莊,路過一家餅鋪,慈悲心化緣得到三塊同樣大小的餅。唐僧想著如何公平地分配這三塊餅,便提出了一個方案:將第一塊餅平均分成2份,讓豬八戒吃其中的一半;將第二塊餅平均分成4份,讓沙和尚吃其中的一半;將第三塊餅平均分成8份,悟空吃其中的一半。唐僧的提議引起了豬八戒的不滿,他認為這樣分配偏心,為什么悟空可以吃到一半,而他只能吃到一半。唐僧聽了豬八戒的意見后,考慮了一下,覺得確實不太公平。于是,他重新想了一個更公平的分餅方案,讓每個人都能公平地分享這三塊餅。
生發表見解。
二、自主合作探索規律
1、三個徒弟平均分得的餅一樣多。我們來看一下這組分數等式:1/2=2/4=4/8。觀察一下這些分數的分子和分母,它們是相同的嗎?雖然分數的分子和分母不同,但它們的值卻相等。再換個角度看,我們發現分數的分子和分母發生變化,但它們的比值保持不變。分數真是一種獨特的數學形式呢!
2、
(1)每個小組找出一組大小相等的分數,并想辦法證明這組分數大小相等。
(2)思考:在寫分數的過程中你們發現了什么規律?
組內商量一下然后開始行動!
3、小組研究教師巡視
4、全班匯報
交流評價(教師相機板書)圓紙片匯報長方形紙匯報正方形紙匯報及聯系一組人數說發現規律把每組數從左往右或者從右向左仔細觀察你能發現分子分母的怎樣的變化規律?(可以舉例說演繹推理深入)隨機更換貼圖
板書課題:分數的'基本性質打出幻燈
5、反思規律看書對照找出關鍵詞要求重讀共同讀
6、當我們將3除以4得到的結果3/4,與12除以16得到的結果12/16進行比較時,我們發現它們是相等的。這說明了分數的一個基本性質:即分子和分母同時乘以(或除以)同一個非零數時,分數的值不變。這個性質也可以通過整數除法中商不變的性質來解釋:在分數中,當分子和分母同時乘以(或除以)同一個非零數時,相當于整數除法中被除數和除數同時乘以(或除以)同一個非零數,商的值也不變。這再次強調了分數的基本性質,幫助我們更好地理解和運用分數的概念。
三、自學例題運用規律
過渡:同學們展現出了強大的學習能力,在接下來的學習中,老師希望你們能夠自主學習課本96頁的例2,并完成相應的練習。現在開始自主學習吧!祝你們學習順利!
生自學
集體評議:例2練一練1和2,請說說你的根據和想法!重點讓學生說說根據什么,分母、分子是如何變化的。
四、多層練習鞏固深化
1、判斷對錯并說明理由
2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8
2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不變的分數
思考:分數的分母相同,能有什么作用?
3、圈分數游戲圈出與1/2相等的分數
4、對對碰與1/2,2/3,3/4生生組組師生互動
五、課堂小結課堂作業
結語:你看,運用數學知識玩游戲,也是樂趣無窮。這節課我們就上到這兒,作業:余下來的時間請完成課本97頁練習十八的1-3題,做在書上。
分數的基本性質教學設計5
教學內容:人教版新課標教科書小學數學第十冊75~77頁例
1、例2.教學目標:1知識與技能目標:
(1)經歷探索分數的基本性質的過程,理解分數的基本性質。
(2)能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。
2、過程與方法目標:
(1)經歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分數的基本性質做出簡要的、合理的說明。(2)培養學生的觀察、比較、歸納、總結概括能力。
(3)能根據解決的需要,收集有用的信息進行歸納,發展學生歸納、推理能力。
3、情感態度與價值觀目標:
(1)經歷觀察、操作和討論等數學學習活動,使學生進一步體驗數學學習的樂趣。(2)鼓勵學生敢于發現問題,培養學生敢于解決問題的學習品質。
教學重點:探索、發現和掌握分數的基本性質,并能運用分數的基本性質解決問題。教學難點:自主探究、歸納概括分數的基本性質。教學準備:學生準備一張正方形的紙,課件教學過程:
一、故事導入。
師:同學們,你們喜歡看《喜羊羊與灰太狼》的動畫片嗎?生:喜歡。
師:老師這里有一個慢羊羊分餅的故事,羊村的小羊最喜歡吃村長做得餅。一天,村子做了三塊大小一樣的餅分給小羊們吃,他把第一塊餅的1/2分給懶羊羊,再把二塊餅的2/4分給喜羊羊,最后把第三塊餅的4/8分給美羊羊,懶羊羊不高興地說:"村長不公平,他們的多,我的少。”(師邊說邊板書分數)同學們,村長公平嗎?他們那個多,那個少?
生:公平,其實他們分得一樣多。
師:到底你們的猜想是否正確呢?讓我們來驗證一下!
二、探究新知,解決問題:1、小組合作,驗證猜想:(1)玩一玩,比一比.(讀要求)師:我們現在小組合作來玩一玩,比一比.(出示要求)
師:(讀要求)現在開始.(學生匯報)師:你們發現了什么?
生1:老師,我們通過比較這三幅圖的陰影部分完全重合,那這三個分數都相等。(師在分數上畫符號)
生2:老師,我們通過比較這三幅圖的陰影部分完全重合,那這三個分數都相等。(出示課件演示)
2、初步概括分數的基本性質.(2)算一算,找一找.師:(提問)同學們觀察一下,這三個分母什么變了?什么沒變?生1:它們的分子和分母變化了,但分數的大小沒變。生2:它們的分子和分母變化了,但分數的大小沒變。
師:這三個分數的分子和分母都不相同,為什么分數的大小都相等呢?同學們思考一下。
生1:它們的分子和分母都乘相同的數。生2:它們的分子和分母都除以相同的數。
師:那同學們的猜想是否正確呢?它們的變化規律又是怎樣呢?我們小組合作觀察討論。并把發現的規律寫下來。
(出示課件)
小組匯報:(歸納規律)
師:哪一組把你們討論的結果匯報一下,從左往右觀察,你們發現了什么?生1:從左往右觀察,我們發現1/2的分子和分母同時乘2,分數的大小不變。生2:從左往右觀察,我們發現1/2的分子和分母同時除以4,分數的大小不變。師:你們是這樣想的,既然這樣,那么分子和分母同時乘5,分數的的大小改變,嗎?生:不變。
師:同時乘
6.8呢?生:不變。
師:那你們能不能根據這個式子來總結一下規律呢?
生1:一個分數的分子和分母同時乘相同的`數,分數的大小不變。生2:一個分數的分子和分母同時乘相同的數,分數的大小不變。師:(板書)誰來舉這樣一個例子?生:......
師:這樣的例子,我們可以舉很多,剛才我們是從左往右觀察,從右往左觀察,哪一組匯報一下。
生:從右往左觀察,我們發現了,4/8的分子和分母同時除以2,得到了2/4,分數2/4的分子和分母同時除以2得到分數1/2,他們的分數的大小不變。
生:從右往左觀察,我們發現了,4/8的分子和分母同時除以2,得到了2/4,分數2/4的分子和分母同時除以2得到分數1/2,他們的分數的大小不變。(師課件演示)
師:你們是這樣想的,既然這樣,那么分子和分母同時除以5,分數的的大小改變,嗎?生:不變。
師:同時除以
6.8呢?生:不變。
師:那你們能不能根據這個式子來總結一下規律呢?
生1:一個分數的分子和分母同時除以相同的數,分數的大小不變。生2:一個分數的分子和分母同時除以相同的數,分數的大小不變。師:(板書)誰來舉這樣一個例子?生舉例
3、強調規律
師:我把兩句話合成了一句話,根據分數的這一變化規律,你認為下面的式子對嗎?(課件出示)
生:回答,錯的,因為分數的分子、分母沒有乘相同的數。師:(在黑板上圈出)對必須乘相同的數。
生:錯,因為分子乘2,分母沒有乘2,分子和分母沒有同時乘。師:(在黑板上圈出)對必須同時乘。
師:分數的分子、分母都乘或除以相同的數,分數的大小不變,這里“相同的數”是不是任何數都可以呢?我們看一看(課件出示)師:這個式子成立嗎?
生:不成立,因為0不能做除數,4乘0得0是分母,分母相當于除數,所以這個式子是錯誤的。
師:我不乘0,我除以0可以么?生:不成立,因為0不能作除數。
師:同學們不錯,這兩個式子都不成立,我們剛才總結的分子、分母同時乘或除以相同的數,這相同的數必須(生:0除外)(師板書)
師:這一變化規律就是我們這節課學習的內容,分數的基本性質,(板書課題)在這一規律里,需要我們注意的是:(生:同時、相同的數、0除外)
師:我相信懶羊羊學習了分數的基本性質,那就不會生氣了它知道(出示課件)一樣多,咱們同學們千萬不要犯它同樣的錯誤了,我們把這一條規律讀兩遍,并記下它。(生讀規律)
師:學習了分數的基本性質,我想利用你們的火眼金睛,當一當小法官(出示課件)
生:(讀題,用手勢表示對、錯,并說出原因)
三、運用規律,自學例題1、學習例2師:這個分數的基本性質特別的有用,我們可以根據分數的基本性質把一個分數化成和它相等的另外一個分數,我們一起去看一看。(課件出示例題)學生讀題
師:分子、分母應該怎樣變化?變化的依據是什么?小組內討論一下(學生討論)師:誰來說一說?
生:2/3的分子分母同時乘4得到8/12,變化的依據是分數的基本性質。生:10/24的分子和分母同時除以2,得到5/12,變化的依據是分數的基本性質。師:回答得不錯,自己獨立完成這題。
師:(巡視)請一名學生說出答案,(生說,師出示答案)
四、分數的基本性質與商不變的性質
師:分數的基本性質作用可大了,那大家回想一下,這與我們以前學習的除法里面哪一個性質相似?生:商不變的性質。
師:除法里商不變的性質是怎么說的?
生:被除數和除數同時擴大或縮小相同的倍數(0除外),商不變。師:你們能否用商不變的性質來說明分數的基本性質?小組內討論一下。
小組討論
師:哪一組把討論的結果匯報一下。
生:在分數里,被除數相當于分子,除數相當與分母,被除數與除數同時擴大或縮小相同的倍數,就相當于分子、分母同時乘或除以相同的數(0除外),因此,商不變就相當于分數的大小不變。(師板書)
師:既然能用商不變的性質來說一說分數的基本性質,那我們來小試牛刀。(出示課件)
生:5除以10等于1/2,當被除數5縮小5倍就相當于分子除以5,分子除以5,分母也除以5,所以10除以5得2.生:12除以24等于4/8,當除數24除以3得8就相當于分母除以3,分母除以3分子也除以3,12除以3得4.五、課堂運用。1、跨欄高手
師:同學們的回答簡直太棒了,那你們有資格讓老師把你們帶到運動場去當跨欄高手了。(出示課件)
師:(學生回答三題)同學們這么大的數一下子就得出結果,有什么秘訣嗎?生:用大數除以小數,就知道分母、分子擴大了幾倍.2、拓展延伸:
師:當了跨欄高手,我們的成績非常的好,那我們就到羊村去玩吧,來到羊村,慢羊羊讓大家當村長,解決難題,你們敢接招嗎?生:敢
師:(出示課件)那我們就要小組為單位,開始玩游戲。小組匯報結果
六、撿拾碩果
看到同學們這么自信的回答,老師知道今天大家的收獲不少,說一說這節課你都收獲了哪些?生說
師:同學們,表現得太好了,這節課,老師從你們的身上也學到了許多,謝謝你們,下課!
分數的基本性質教學設計6
一、教學目標
1.經歷探索分數基本性質的過程,理解分數的基本性質。
2.能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。
3.經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣。
二、教學重、難點
教學重點是:分數的基本性質。
教學難點是:對分數的基本性質的理解。
三、教學方法
采用了動手做一做、觀察、比較、歸納和直觀演示的方法
四、教學過程
(一)、故事引入,揭示課題
1.教師講故事。
猴山上的猴子們最喜歡吃猴王做的香蕉餅了。有一天,猴王做了三塊大小一樣的香蕉餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊。”猴王就把第二塊餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切成十二塊,分給猴3三塊。小朋友們,你知道哪只猴子分得多嗎?
討論:三只猴子一起分到了三塊大小一樣的香蕉,它們都覺得自己分得的最多。經過仔細觀察和比較,發現其實每只猴子分得的香蕉數量都是一樣的。
引導:聰明的猴王想出了一個聰明的辦法來滿足小猴子們的要求并且公平分配食物。他決定讓每只小猴子依次從一堆食物中取一份,直到食物被取完為止。這樣每只小猴子都有機會先后選擇食物,確保了公平分配。這個方法既滿足了小猴子們的要求,又讓他們學會了合理分享。
2.組織討論。
(1)三只猴子分得的餅同樣多,說明它們分得的餅的分數是相等的。也就是說,三只猴子分得的餅的分數是14、28和312,它們之間是相等的關系。雖然它們平均分的份數和表示的份數不同,但是它們的大小是相等的。
(2)猴王將三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小是否相等呢?你還能找出另一組相等的分法嗎?通過仔細觀察我們可以發現:2/3=4/6=6/9。
(3)我們班有40名同學,分成了四組,每組10人。那么第一、二組學生的人數占全班學生人數的幾分之幾?請用分數表示,并簡化分數。
3.引入新課:黑板上三組相等的分數有什么共同的特點?學生回答后板書:
分數的分子和分母變化了,分數的大小不變。
它們各是按照什么規律變化的呢?我們今天就來共同研究這個變化規律。
(二)、比較歸納,揭示規律
1.出示思考題。
比較每組分數的分子和分母:
(1)從左往右看,是按照什么規律變化的?
(2)從右往左看,又是按照什么規律變化的?
讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。
2.集體討論,歸納性質。
(1)從左往右看,由34到68,分子、分母是怎么變化的?引導學生回答出:把34的分子、分母都乘以2,就得到68。原來把單位“1”平均分成4份,表示這樣的3份,現在把分的份數和表示份數都擴大2倍,就得到68。
板書:
(2)34是怎樣變化成912的呢?怎么填?學生回答后填空。
(3)引導口述:34的分子、分母都乘以2,得到68,分數的大小不變。
(4)學生們對幾組分數進行了觀察,發現分子和分母的變化規律是同時乘以相同的數。經過歸納總結,他們得出結論:分數的分子和分母都乘以相同的'數,分數的大小不變。
(板書:都乘以
相同的數)
(5)分數的分子和分母之間存在一個共同的因數,當分子和分母同時除以這個因數時,得到的新分數與原分數大小相同。
(板書:都除以)
(6)引導思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二個“都”字,換成“或者”)再對照教科書中的分數基本性質,讓學生說出少了什么?(少了“零除外”)討論:為什么性質中要規定“零除外”?
(板書:零除外)
(7)齊讀分數的基本性質。先讓學生找出性質中關鍵的字、詞,如“都”、“相同的數”、“零除外”等。然后要求關鍵的字詞要重讀。師生共同讀出黑板上板書的分數基本性質。
3.出示例2:把12和1024化成分母是12而大小不變的分數。
思考:要把12和1024化成分母是12而大小不變的分數,分子、分母怎么變化?變化的依據是什么?
4.討論:猴王運用什么規律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?
5.質疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。
(三)、溝通說明,揭示聯系
通過舉例,分數的基本性質與商不變性質之間有密切的聯系。在分數中,分子和分母之間存在著除數與商的關系,分子除以分母就得到分數的值。當我們進行分數的乘除運算時,商不變性質起著重要作用。商不變性質指的是在乘除運算中,如果被乘數或被除數同時乘(除)以(除以)一個相同的數,那么乘積(商)不變。舉例來說,如果我們有一個分數$frac{a}{b}$,其中$a$和$b$分別是整數,那么當我們將分子和分母同時乘以相同的數$c$,得到的新分數為$frac{ac}{bc}$。根據商不變性質,這兩個分數是等價的,即它們代表同一個數值。這說明分數的基本性質中的分子和分母可以同時乘以一個相同的數,不改變分數的值。因此,分數的基本性質與商不變性質共同構成了分數運算中的重要規律。在進行分數的乘除運算時,我們可以利用商不變性質來簡化計算,保證結果的準確性。
如:34=3÷4=(3×3)÷(4×3)=9÷12=912
(四)、多層練習,鞏固深化
1.口答。(學生口答后,要求說出是怎樣想的?)
2.判斷對錯,并說明理由。(運用反饋片判斷,錯的要求說明與分數的基本性質中哪幾個字不相符。)
教學反思:
學生是學習的主體,教師是引導和組織學習的助手。在數學課堂上,教師的作用是激發學生的學習興趣,引導他們積極參與到數學學習中來。為了實現這一目標,教師需要深入了解學習方法,建立起一種以探究為核心的學習模式。教師應該激發學生的學習動力,為他們創造充分的學習機會,幫助他們通過自主觀察、討論、合作、探究來真正理解和掌握數學知識和技能,充分發揮學生的主動性和創造性。一個重要的特點是設計學習方法,從大膽猜想、實驗感知、觀察討論到總結歸納,都是為了促進學生自主探究和合作學習而設計的。
1、學生在故事情境中大膽猜想。
通過創設“猴王分餅”的故事,讓學生猜測一組三個分數的大小關系,為自主探索研究“分數的基本性質”作必要的鋪墊,同時又很好地激發了學生的學習熱情。
2、學生在自主探索中科學驗證。
在學生大膽猜想的基礎上,教師適時揭示猜想內容,并對學生的猜想提出質疑,激發學生主動探究的欲望。在探索“分數的基本性質”和驗證性質時,通過創設自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結論的正確性,突現出課堂教學以學生為本的特性。整個教學過程以“猜想——驗證——完善”為主線,每一步教學,都強調學生自主參與,通過規律讓學生自主發現、方法讓學生自主尋找、思路讓學生自主探索,問題讓學生自主解決,使學生獲得成功的體驗,增強自信心。
3、讓學生在分層練習中鞏固深化。
在練習的設計上,我們需要確保題目緊扣重點,設計新穎、多樣,難度層次遞進。首先,前兩題作為基礎練習,旨在幫助學生理解概念,全面了解他們對新知識的掌握情況。第三題則是在前兩題基礎上,鞏固練習,加深對所學知識的理解。最后一題通過游戲形式,旨在加深學生對分數基本性質的認識,激發學生學習興趣,活躍課堂氣氛。這樣設計不僅能照顧到學生的思維發展過程,同時也能拓寬學生的思維空間,真正做到學以致用。
在教學過程中,我們應該注重引導學生進行多種方法的驗證,而不僅僅局限于老師提供的幾種方法。數學教學的目的不是僅僅教會學生問題的答案,更重要的是教會他們思考問題的方法和途徑。因此,當讓學生驗證結論的正確性時,應該給予他們更大的自由度,讓他們自己去尋找多種途徑進行驗證。這樣不僅可以激發學生的求知欲和探索欲,也有助于培養他們的創新能力和解決問題的能力。
分數的基本性質教學設計7
【教材依據】
《分數的基本性質》是九年義務教育北師大版五年級上冊第三單元的內容。
【設計理念】
根據新課標的基本要求,我以培養學生的創新意識和實踐能力為重點,在教學中創設情境讓學生“自由大膽猜想——主動探究驗證——合作交流得到結果”的開放式教學流程。讓學生在問題情境中激活內在要求,大膽猜想,使實驗成為內在需求。通過觀察操作、經歷知識的形成。讓學生變被動的知識接受者為主動知識的探索者。
【學情與教材分析】
《分數的基本性質》是北師大版小學數學教材五年級上冊第三單元《分數》的教學內容,它既與整數除法的商不變性質有著內在的聯系,也是約分和通分的基礎,而約分和通分又是分數四則運算的重要基礎,因此,理解分數的基本性質顯得尤為重要。學生之前已經掌握了商不變的性質,在教學之后將其與分數的基本性質進行聯系,有意識地加強分數與除法的關系,以便把舊知識遷移到新的知識中來。
【教學目標】
1、經歷探索分數基本性質的過程,理解分數的基本性質。
2、能運用分數基本性質,把一個數化成指定分母(或分子)大小不變的分數。
3、經歷觀察、操作和討論等數學活動,體驗數學學習的樂趣及數學與日常生活密切聯系。
【教學重點】運用分數的基本性質,把一個數化成指定分母(或分子)而大小不變的分數。
【教學難點】聯系分數與除法的關系,理解分數的基本性質,溝通知識間的聯系。
【教學準備】多媒體課件長方形白紙、圓片,彩色筆等。
【教學過程】
一、創設情境,激趣導入
師:同學們,新的學期到來了,你們剛入校園時覺得我們學校都發生了哪些變化,(換了新課桌,有了新的洗手間,有了文化走廊,有了開心農場),說到開心農場,還有一個小故事,開學初,校長決定把這塊地的三分之一分給四年級,六分之二分給五年級,九分之三分給六年級,四年級同學認為校長不公平,分給六年級的同學多而分給他們的少,校長聽了,笑了,誰能根據自己的預習告訴老師校長笑什么?
生1:四、五、六年級分的地一樣多。
生2:……
師:到底校長分的公平不公平,我們來做個實驗吧?
二、動手操作,探究新知
1,小組合作,實驗探究。
師:請同學們拿出你們準備好的學具,按平時的分組習慣四人一組,用你們的學具來代替這塊地,像校長一樣來分地吧。
2,匯報結果
師生交流:你們是怎樣做的?誰能說一說,請幾個同學上臺演示并口述演示過程。
生1:用三張同樣的長方形的'紙來代替這塊地,分別涂出其中的三分之一,六分之二,九分之三。經過對比發現三塊地一樣多。
生2:用三個同樣的圓片分別涂出其中的三分之一,六分之二,九分之三。經過對比發現三塊地一樣多。
生3:用三條線段分別畫出其中的三分之一,六分之二,九分之三。經過對比發現三塊地一樣多。
生4:把分數化成小數,他們的商也一樣,所以三塊地的面積一樣大。
生5:……
3、課件展示,得出結論。師:校長分的和你們一樣嗎?我們再來看看小電腦是如何拼的,(利用優質資源課件演示分地的過程,師生共同觀察總結得到校長分的地一樣多。)
(設計意圖:這樣設計的目的是為了更有利于學生主體個性的發揮,在探究活動中充分發揮學生的個體的潛能,給學生足夠的時間和想象的空間,進行小組合作式的探究活動,讓學生自由的猜想,使實驗成為自己的需要,同時讓學生思考用什么方法驗證,使學生帶著濃濃的興趣進入探究新的學習活動之中。)
4、探索分數的基本性質。
師:三個年級分的地一樣多,那么你們覺得、、這三個分數的大小怎么樣?
生:相等。
師:同學們請看這組分數有什么特點?(板書=)
生:分數的分子分母發生了變化分數的大小不變。
師:請同學們從左往右仔細觀察,第一個分數和第二個分數相比分子分母發生了什么變化?第一個和第二個,第二個和第三個呢?
生:分子分母同時乘2,……
師:誰能用一句換來描述一下這個規律?
生:給分數的分子分母同時乘相同的數。(師隨著板書)
師:同學們在反過來從右往左觀察,分數的分子、分母有什么變化規律?
生:分數的分子分母同時除以相同的數。
師:像這樣給分數的分子分母同時乘或(除以)相同的數,分數的大小不變。就是我們這節課學習的新知識。(板書分數的基本性質)。
師:結合我們的預習,對于分數的基本性質同學們還有什么不同的意見?
生:0除外。
師:為什么0要除外?
生:因為分數的分母不能為0.
師:(補充板書0除外)在分數的基本性質中,那幾個詞比較重要?
生:同時相同0除外
師:(把這三個詞用紅筆加重)同學們有沒有發現分數的基本性質和誰比較相似?
生:商不變的性質。
師:為什么?
生:我們學過分數與除法的關系,被除數相當于分子,除數相當于分母,所以他們是相通的。
師:數學知識中有許多知識如像商不變性質與分數的基本性質是一致的。因此平時學習中我們要觸類旁通,靈活運用,才會舉一反三。
三:應用新知,練習鞏固。
(一)練一練
(二)摸球游戲。老師手中有一個箱子,里面裝有許多水果,水果上面寫著不同的分數,如果你摸到一個水果,說出一個與它大小相等,而分子分母不同的新分數,這個水果就獎勵給你。
(二)判斷(搶答)
1、分數的分子、分母都乘過或除以相同的數分數的大小不變。
2、把的分子縮小5倍,分母也縮小5倍分數的大小不變。
3、給分數的分子加上4,要是分數的大小,分母也要加上4。
(四)測一測
1、把和都化成分母是10而大小不變的分數。
2、把和都化成分子是4而大小不變的分數。
3、的分子增加2,要是分數大小不變,分母應增加幾?
四:總結。
1、這節課大家表現的都很棒,誰能說說你這節課你都知道哪些知識?
2、把板書最后補充成一條魚,希望大家擁有一雙明亮的眼睛,肚子里裝滿知識,在知識的海洋里遨游。(完成板書)
五:作業練習冊2、4題
【板書設計】
分數的基本性質
給分數的分子分母同時乘或除以相同的數(0除外)分數的大小不變。
【教學反思】
本節課教學,我讓學生在故事中感悟,激發了他們的學習興趣。在數學課上講故事,對孩子來說,無疑是新鮮有趣的。不僅如此,還能從中發現數學問題,這是多么美好的事情!
這樣的設計真是激發了學生的學習興趣,學生帶著愉快的心情展開學習。課堂的故事導入就是引導學生以數學的視角來分析問題、解決問題,從而讓學生感受學習數學的價值。
本節課教學是讓學生在感悟中自主探索。自主探索是學生學習活動的核心,它是讓每個學生根據自己的已有經驗、感受,用自己的思維方式,自由、開放地去探索、去發現、去創造。
在學生通過聽故事、看圖片,讓學生猜想、、這三個分數是否真的相等,并聯想學過的知識或借助學具,怎樣證明你的聯想是正確的。學生想出了多種方法證明這三個分數也是相等的,體現了學生思維的廣度,這種設計克服了學生思維的惰性,有利于學生自主探索的學習習慣的養成。課堂給學生多設計這樣的開放性的問題,多給學生開展一些探索性的活動,相信不同的學生在數學上都會有不同的發展。
分數的基本性質教學設計8
一、教學目標
1、使學生理解和掌握分數的基本性質,能應用分數的基本性質把一個分數化成指定分母而大小不變的分數。
2、學生通過觀察、比較、發現、歸納、應用等過程,經歷探究分數的基本性質的過程,初步學習歸納概括的方法。
3、激發學生積極主動的情感狀態,體驗互相合作的樂趣。
二、教學重點
1、理解、掌握分數的基本性質,能正確應用分數的基本性質。
2、自主探究出分數的基本性質。
三、教學準備
課件、正方形的紙
四、教學設計過程
(一)遷移舊知.提出猜想
1、回憶舊知
根據“288÷24=12”填空
28.8÷2.4=
2880÷240=
2.88÷0.24=
0.288÷()=12
被除數÷除數=()
說一說你是根據什么算的?引導學生回憶商不變的性質?媒體出示:商不變的性質:
被除數和除數同時乘或除以相同的數(零除外),商不變。
2、提出猜想
既然分數與除法的關系這么緊密.除法有商不變性質,那分數是否也會有這樣的'性質,請大家大膽猜想一下。(學生可能根據商不變性質推導出分數的基本性質,學生匯報后投影出示:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。)
(二)驗證猜想,建構新知
1、你有什么辦法來驗證自己的猜想?(折一折、分一分、涂一涂等方法。)
2、出示學習提示。
學習提示
A、同桌合作,借助手中的學具,選擇喜歡的方法,驗證自己的猜想。
B、驗證結束后,把你的驗證方法和結論與小組同學交流。
3、匯報交流
指名3到4名同學到講臺前與全班同學交流自己的驗證方法和過程,教師相機板書。
C、總結規律
1、師:請同學們看黑板上的兩組分數,說說它們的分子和分母分別是按什么規律變化的。指名回答,教師板書。
2、總結:對于任何一個分數,只要滿足:分數的分子和分母同時乘或除以相同的數,分數的大小就不會發生變化。
3、強調0除外。哪位同學將分數的分子和分母同時乘或除以0進行驗證的?
如果有,問他是否驗證出猜想,驗證過程中出現了什么問題,如果沒有,肯定他們的做法是對的,從而出示完整的規律:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
師:為什么要0除外?
師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)
教師以3/4為例說明分數的分子和分母同時乘或除以0是沒有意義的。
師:再次出示分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。這叫做分數的基本性質。(板書課題)
D教學例2
把2/3和10/24都化為分母為12而大小不變的分數。
學生獨立完成,集體訂正。
(三)練習升華
1、填空
2、下面算式對嗎?如果有錯,錯在哪里?
3、把相等的分數寫在同一個圈里。
4、老師給出一個分數,同學們迅速說出和它相等的分數。
(四)作業
教材59頁第9題。
(五)思維拓展
(六)總結延伸
師:這節課你有什么收獲?
六、板書設計
分數基本性質
分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
分數的基本性質教學設計9
教學目標:
結合趣味故事經歷認識分數的基本性質的過程。
初步理解分數的基本性質,會應用分數的基本性質進行分數的改寫。
經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣
教學重點:理解掌握分數的基本性質。
教學難點:歸納分數的性質。
學生準備:長方形紙片。
一、創設故事情境,激發學生學習興趣并揭示課題。
編了一個唐僧師徒4人分西瓜的故事,利用孫悟空的機智聰明和豬八戒貪吃的特點。創設問題情境引起學生的探究興趣,通過把一個西瓜平均分成4塊,豬八戒吃了一塊,再把這西瓜平均分成8塊,豬八戒吃了2塊。最后把西瓜分16塊,豬八戒吃了4塊,設計這個故事的目的是使學生在已有生活經驗和分數知識的背景下,了解豬八戒沒有多吃到餅的事實,為理解分數的基本性質提供實踐經驗。在看完故事后向學生提問你了解到了哪些數學信息,想到了什么問題?
讓學生討論并用自己的方法說明八戒沒有多吃到餅。讓學生親自動手折一折、分一分、比一比,通過課件從直觀上讓學生感受到這三個分數大小是相等的。而這兩個分數的分子和分母都不相等,可分數卻相等,這其中有什么規律呢,從而來揭示課題。
二、小組合作,探究新知:
1、動手操作、形象感知
出示課件,讓學生觀察討論圖中分數的涂色部分是多少?
A、談話:請同學們拿出課前準備好的一張正方形的紙,你能先對折,并涂出它的1/4嗎?
B、追問:你能通過繼續對折,每次找一個和1/4相等的其他分數嗎?
C、學生操作,并組織交流:每次對折后,正方形被平均分成多少份。涂色部分有幾份。并思考可以用什么分數表示涂色的部分,得到的分數與1/4是否相等。交流時讓不同對折方法的學生充分展示。
2、觀察比較、探究規律
(1)通過動手操作,你認為它們誰大?請到展示臺上一邊演示一邊講一講。
(2既然這三個分數相等,那么我們可以用什么符號把它們連接起來?
(3)這三個分數的分子、分母都不相同,為什么分數的大小卻相等的?你們能找出它們的變化規律嗎?請同學們四人為一組,討論這兩個問題
(4)通過從左到右的觀察、比較、分析,你發現了什么?
使學生認識到這四個正方形同樣大,雖然平均分的份數不一樣,但陰影部分的面積相等,四個分數也相等。課件出示連等式子。
【通過展示不同的對折方法,使學生體會解決問題方法的多樣性,拓展學生的思維。】
3引導觀察:請大家觀察每個等式中的兩個分數,它們的分子、分母是怎樣變化的?
觀察思考后。在課文上填空,再在小組內交流。然后教師再集中指導觀察:
先從左往右看:1/4是怎樣變為與它相等的2/8的?由2/8到4/16,分子、分母又是怎樣變化的?誰用一句話說出它的變化規律?再從右往左看:4/16是怎樣變化成與之相等的2/8的?2/8、1/4呢?用一句話說出它的變化規律?
4、歸納規律
提問:綜合以上兩種變化情況,誰能用一句話概括出其中的規律?
學生交流歸納,最后全班反饋“分數的分子和分母同時乘或除以相同的數﹙0除外﹚,分數的大小不變,這是分數的基本性質”
6、小結
同學們在這節課的學習中表現得很出色,說一說你有什么收獲或體會?
【通過小結,既對整個課堂學習的.內容有一個總結,又能讓學生產生后續學習和探究的欲望,將學生的學習興趣延伸到了下節課】
四、鞏固強化,拓展應用
多樣的練習可以讓學生及時鞏固所學知識,又調動了學生學習的積極性。
五、游戲找朋友。
六、布置作業:
在上這課之前,認真備課,精心設計課堂思路,準備好教具。課前,活躍氣氛。開始可能是由于農村吧,基本上,上課都是用黑板,難得一次上課時利用多媒體上課的。學生對此也是很有興趣的,特別是在創設情景的時候,很開心的投入課堂氣氛來。緊接著動手操作等步驟都很好。唯一不足是學生沒感大膽發言。對于問題,答得不是很清晰。教師讓學生主動探索,逐步獲取規律,最后也都一一的解答并歸納分數的性質。對于從左到右的變化,分子分母都變大了,但分數大小不變。從右到左,分子分母都變小,分數大小不變。從而得出規律。對于這分數的性質要讓學生抓住幾個重點詞,“都”“乘以或除以”“相同的數”“零除外”重點讓學生熟記分數的性質。多層的鞏固練習。加深學生的理解。并且能運用分數的性質完成作業。最后,讓學生輕松愉快地應用著這節課所學的知識進行找朋友的游戲。
分數的基本性質教學設計10
教學內容:人教版小學數學第十冊第75頁至78頁。
教學目標:
1、分數是數學中常見的表示形式,它由分子和分母組成,可以表示部分和整體之間的關系。學生在學習分數時,需要掌握分數的基本性質,比如分子和分母可以同時乘以一個非零數,來得到一個等價的分數。這樣做不會改變分數的大小,只是改變了分數的形式。這個性質在簡化分數、比較分數大小等問題中非常有用。
2、培養學生的觀察能力、動手操作能力和分析概括能力等。
3、讓學生在學習過程中養成互相幫助、團結協作的良好品德。
教學準備:
課件、長方形紙片、彩筆。
教學過程:
一、創設情境,憶舊引新
悟空師徒四人來到一個小國家——算術王國,豬八戒饑腸轆轆,悟空便對他說:“我給你10塊饅頭,平均分2天吃完,怎么樣?”八戒聞言大怒:“太少了,你這猴子欺負我!”悟空瞇起眼睛說:“那我就給你100塊饅頭,平均分20天吃完,可以了吧。”八戒聽后大喜:“太好了!太好了!這下每天我可以多吃點了!”
同學們,你們認為八戒說得有道理嗎?(沒道理)
很久很久以前,在一個神秘的森林里,一只小松鼠和一只小松鼠精靈相遇了。小松鼠問道:“你是誰?為什么看起來和我這么像?”小松鼠精靈神秘地笑著說:“或許我們有著某種特殊的聯系,但這個謎團需要我們一起去解開……”
為什么?用你們的數學知識幫他解決一下吧。(學生立式計算)
先算出商,再觀察,你發現了什么?
被除數和除數同時擴大(或縮小)相同的倍數,商不變。
同學們,再想一想除法與分數有什么關系,并完成這些練習吧。
8÷15=? 3÷20=?? 14÷27=
二、動手操作 、導入新課
同學們對知識掌握的真不錯,為了表揚你們,我決定找三個同學來與我一同分享一個兌現。(拿出準備好的長方形紙片。)
我們把三張紙片比喻成三塊餅,大家一起比較,每人的三塊餅大小是相同的嗎?請拿出第一塊餅,我想與你每人一塊,確保它們大小一樣,你能做到嗎?你給我的那塊餅為什么是這塊餅的一半呢?用分數怎么表示呢?
我想與你每人兩塊,而且大小要一樣大,你又能做到嗎?用分數怎樣表示呢?
當我們想要平均分配四塊給你和我時,你覺得這種分配方式可行嗎?用分數來表示這種分配又是怎樣的呢?這三個分數的大小是否相等呢?為什么呢?在本節課中,我們將一起探討這個數學問題。
這里是一個小故事:小明手里拿著三根不同長度的繩子,他想知道這三根繩子的長度是否相等。于是,他將三根繩子分別放在桌子上比較。經過比較后,小明發現這三根繩子看起來似乎長度相等。這讓小明感到很驚訝,他開始思考為什么這三根繩子的長度看起來一樣。這個問題困擾著小明,他決定繼續探究原因。
三、探索分數的'基本性質
你們三次給我的餅大小相等嗎?那么這三個分數大小怎樣?可以用怎樣的式子表示?
1、觀察一下這個式子,3個分數有什么不同?有什么地方相同?分數的大小為什么會不變呢?要弄清楚這個問題,我們必須先觀察分數的分子、分母是怎樣變化的。你們能從商不變的規律,分數與除法的關系中找出它們的變化規律嗎?
2、學生交流、討論并 匯報 ,得出初步分數的基本性質。
分數的分子、分母同時乘以或除以相同的數,分數的大小不變。
3、將結論應用到
(1)先從左往右看, 是怎樣變為與它相等的 的?分母乘2,分子乘2。
(2)由 到 ,分子、分母又是怎樣變化的? (把平均分的份數和取的份數都擴大了4倍。)
(3)是怎樣變化成與之相等的 的?
(4)又是怎樣變成 的?(把平均分的份數和取的份數都縮小了4倍。)
4、當兩個數相乘或相除時,其中一個數增大,另一個數減小,結果會更接近前者。不過,不能同時乘或除以0,因為0不能作為除數。
5、這就是今天我們所學的“分數的基本性質”(板書課題,出示“分數的基本性質”)。學生讀一遍,你認為哪幾個字特別重要?(相同的數、0除外)相同的數,指一些什么數?為什么零除外?
四、知識應用(你知道,阿凡提為什么會笑嗎?他對三兄弟講了哪些話?)
有一位父親將一塊土地留給了他的三個兒子。大兒子認為這塊土地是他的,二兒子認為這塊土地是他的,三兒子也認為這塊土地是他的。大兒子和二兒子覺得自己吃虧了,于是他們開始爭吵。這時,阿凡提路過,詢問了爭吵的原因后,他笑了笑,給了他們一些建議,三兄弟因此停止了爭吵。
分數的分子和分母同時乘或者除以相同的數,分數的大小不變。
分數的分子和分母同時乘或者除以一個數(零除外),分數的大小不變。
分數的分子和分母同時乘或者除以相同的數(零除外),分數的大小不變。
⒍小結。
從判斷題中我們可以看出,分數的基本性質要注意什么?學到這兒,大家想一想,我們以前學過的什么性質跟分數的基本性質類似?誰能用整數除法中商不變的性質來說明分數的基本性質?
學生通過觀察和比較發現,當分子和分母同時擴大或縮小相同的倍數時,所得的分數的大小并不會改變。這說明分數的大小取決于分子和分母的比例關系,只有在同向、同倍變化的情況下,分數的大小才能保持不變。這一規律也適用于其他分數,只要分子與分母按相同的比例變化,所得的分數大小仍然保持不變。因此,我們可以得出分數的基本性質:分子與分母是同時變化的,是同向變化的,是同倍變化的。
五、鞏固練習
⒈卡片練習:
⒉做P96“練一練”1、2。
⒊趣味游戲:
數學王國即將舉辦一場音樂會,分數大家族的節目是女聲大合唱,演出時間緊迫,需要大家快速幫助合唱隊的成員按照要求排好隊伍。請盡快協助整理隊伍,謝謝!
要求:第一排是所有同學的分數值等于,第二排是所有同學的分數值等于,還有一位同學是指揮,他是小明。我選擇小明作為指揮是因為他在團隊合作中展現出了出色的領導能力和組織能力,能夠有效地協調大家的行動,確保任務順利完成。
【通過練習,分數是數學中的一個重要概念,可以表示一個整體被等分成若干份的情況。分數由分子和分母組成,分子表示被等分的部分數量,分母表示整體被等分的份數。分數可以用來表示部分與整體之間的關系,比如$frac{1}{2}$表示一個整體被等分成兩份中的一份。在分數的運算中,我們需要掌握分數的基本性質,比如分數的大小比較、分數的化簡、分數的四則運算等。對分數的基本性質有深刻的理解可以幫助我們更好地應用分數解決實際問題。
六、課堂總結
這節課你學到了什么?什么是分數的基本性質?你是怎樣理解的?
七、布置作業
做P97練習十八2。
分數的基本性質教學設計11
教學要求
①分數是數學中的一種特殊表示形式,用來表示一個整體被分成若干等份中的一部分。分數有一些基本性質,比如分數的大小與分子成正比,分母成反比,即分子越大,分數越大;分母越大,分數越小。另外,分數可以化簡為最簡形式,即分子與分母沒有共同的因數。當我們需要比較或運算不同分母的分數時,可以通過找到它們的最小公倍數,將分數化為相同分母的形式,從而方便比較大小或進行運算。
②培養學生觀察、分析和抽象概括能力。
③滲透“事物之間是相互聯系”的辯證唯物主義觀點。
教學重點理解分數的基本性質。
教學用具每位學生準備三張同樣的長方形紙條;教師:紙條、投影片等。
教學過程
一、創設情境
1.120÷30的商是多少?被除數和除數都擴大3倍,商是多少?被除數和除數都縮小10倍呢?
2.說一說:
(1)商不變的性質是什么?
(2)分數與除法的關系是什么?
3.填空。
1÷2=(1×2)÷(2×2)==。
二、揭示課題
分數除法中是否存在商不變的性質,讓我們一起來探索吧!你認為在分數中會不會存在類似的性質呢?這個性質會是什么呢?讓我們一起大膽猜測吧!
隨著學生的回答,教師板書課題:分數的基本性質。
三、探索研究
1.動手操作,驗證性質。
(1)請拿出三張同樣大小的長方形紙條,將它們分別平均分成2份、4份、6份,并分別用不同顏色涂抹其中的1份、2份、3份。請用分數形式表示每張紙條上被涂色的部分。
(2)觀察比較后引導學生得出:==
(3)從左往右看:==
由變成,平均分的.份數和表示的份數有什么變化?
把平均分的份數和表示的份數都乘以2,就得到,即==(板書)。
把平均分的份數和表示的份數都乘以3,就得到,即:==(板書)。
引導學生初步小結得出:分數的分子、分母同時乘以相同的數,分數的大小不變。
(4)從右往左看:==
引導學生觀察明確:的分子、分母同時除以2,得到。同理,的分子、分母同時除以3,也可以得到。
讓學生再次歸納:分數的分子、分母同時除以相同的數,分數的大小不變。
(5)引導學生概括出分數的基本性質,并與前面的猜想相回應。
(6)提問:這里的“相同的數“,是不是任何數都可以呢?(補充板書:零除外)
2.分數的基本性質與商不變的性質的比較。
在除法里有商不變的性質,在分數里有分數的基本性質。
想一想:根據分數與除法的關系以及整數除法中商不變的性質,你能說明分數的基本性質嗎?
3.學習把分數化成指定分母而大小不變的分數。
(1)出示例2,幫助學生理解題意。
(2)啟發:要把和化成分母是12而大小不變的分數,分子應該怎樣變化?變化的根據是什么?
(3)讓學生在書上填空,請一名學生口答。
4.練習。教材第108頁的做一做。
四、課堂實踐。
練習二十三的1、3題。
五、課堂小結
1.這節課我們學習了什么內容?
2.什么是分數的基本性質?
六、課堂作業
練習二十三的第2題。
七、思考練習
練習二十三的第10題。
教學反思:
“分數的基本性質”是小學五年級下冊數學教材的重要內容,它是約分、通分的基礎,對于學習比的基本性質也具有重要意義。因此,分數的基本性質是本單元的重點課程。在這節課上,我將采用“猜想和驗證”的教學方法,為學生留出充分的探索時間和廣闊的思維空間,讓他們在實踐中掌握知識,培養數學思維。通過這樣的教學方式,不僅使學生掌握了數學基本知識,更重要的是激發了他們學習的主動性,培養了他們解決實際問題的能力。這樣的教學目的在于培養學生學會學習、學會思考、學會創造,從而使他們能夠運用數學的思維方式解決未來生活中遇到的各種問題,這也是學生必備的基本素質。
這節課是在學生已經掌握了商的不變性質,并具有一定應用經驗的基礎上進行的。在這節課中,我設計了一些新的挑戰和問題,幫助學生深入理解商的不變性質,并在實際問題中靈活運用所學知識。通過這種方式,學生可以提高對商的理解和運用能力,為他們進一步學習和應用商的相關知識打下堅實的基礎。
1、商不變的性質與除法、分數的關系密切相關,商不變意味著在一定條件下商的值保持不變。在商不變的基礎上,我們可以猜想分數的基本性質是什么?請同學們根據商不變的性質大膽猜想一下,分數的基本性質是什么?并且說出你們的想法。
2、讓學生在折紙游戲中充分發揮主體作用,通過操作、觀察、比較來驗證自己的猜想。可以讓他們嘗試不同的折法,觀察折疊后的形狀和顏色變化,并用不同的顏色表示不同的分數,培養他們的動手能力和觀察解決問題的能力。
3、設計練習時要考慮到知識的轉化能力,因此練習的設計應該具有典型性、多樣性、深度和靈活性。首先,通過基礎練習深化對分數基本性質的理解,包括分子、分母、約分、通分等方面。然后,在學完整個知識點后,進行綜合練習,鞏固知識,提高能力。在練習中注重應用拓展,讓學生能夠將所學知識應用到實際問題中,培養他們解決問題的能力。
分數的基本性質教學設計12
教學內容:
蘇教版數學五年級下冊第60~61頁例1、例2,試一試及練習十一1~3題。
預設目標:
1、使學生經歷探索分數基本性質的過程,初步理解和掌握分數的基本性質,知道它與商不變規律之間的聯系。
2、使學生能應用分數的基本性質,把一個分數化成指定分母或分子而大小不變的分數。
3、使學生在觀察、操作、思考和交流等活動中,培養分析、綜合和抽象、概括能力,體驗數學學習的樂趣。
教學重點:
探索、發現、歸納和理解分數的基本性質。
教學過程:
一、導入
猜謎:你有我有他也有,黑身子黑腿黑腦袋,燈前月下伴你走,就是從來不開口。
二、學習新知
1、提供例證
(1)觀察兩個算式:1÷32÷6,問這兩個算式的商相等嗎?你的依據是什么?你能接著往下再寫一個除法算式嗎?
板書:1/3=2/6=3/9(得出三個相等的分數)
(2)學生折紙找與1/2相等的分數。
你能先對折,涂色表示它的1/2嗎?你能通過繼續對折,找出和1/2相等的其他分數嗎?
展示與1/2相等的分數,并逐步板書:1/2=2/4=4/8=8/16
2、誘導探索
提問:這些分數的分子、分母都不同,但是它們的大小都是一樣的,這里隱藏著什么規律呢?分數的分子、分母怎樣變化分數的大小不變呢?
3、探究新知
(1)獨立思考或小組交流。
(2)探究驗證。
你能從(1/2=2/4、1/2=4/8、1/2=8/16)這三組分數中任意選一組具體說說分數的分子、分母怎樣變化以后,分數的大小不變?
教師根據學生的回答進行板書。
4、揭示結論:出示分數的基本性質的內容,并揭示課題。
5、深究結論:
(1)在分數的基本性質中,你認為哪些字詞比較重要,為什么?
(2)齊讀并理解記憶分數的基本性質。
三、多層練習
1、填一填。(在○里填運算符號,在□里填數或字母)。
4/5=4×6/5○□=24/□20/70=20○□/70÷5=□/14
5/8=5○□/8○67/12=7○□/12○□
2、判斷。
3/4=3+4/4+4()12/15=12÷n/15÷n()
5/25=5×5/25÷5()5/6=25/30()
四、課堂作業:
1、第62頁“練一練”2。
2、第63頁第3題。
3、每日一題:請判斷3/4和3+6/4+8是否相等,為什么?
反思
“分數的基本性質”在分數教學中占有重要的地位,它是約分、通分的依據,對于以后學習比的基本性質也有很大的幫助,所以分數的基本性質是本單元的教學重點。這節課我大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到的不僅是數學知識,更主要的是數學學習的方法,
從而激勵學生進一步地主動學習,產生我會學的成就感,讓學生學會學習,學會思考,學會創造,進而培養學生用數學的思想方法思考并解決在實際生活中所遇到的各種問題,這也是學生適應未來生活必須的基本素質。學生已掌握了商不變的性質之后,并在已有應用經驗的基礎上進行的,這節課我是這樣設計教學的:
1、通過商不變的性質、除法與分數的'關系的復習,幫助學生意識到商不變的變規律與新知識的聯系,為新知識的學習做好必要的準備。
2、學生在自主探索中科學驗證。
在學生大膽猜想的基礎上,教師適時揭示猜想內容,并對學生的猜想提出質疑,激發學生主動探究的欲望。在探索“分數的基本性質”和驗證性質時,通過創設自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結論的正確性,突現出課堂教學以學生為本的特性。每一步教學,都強調學生自主參與,通過規律讓學生自主發現、方法讓學生自主尋找、問題讓學生自主解決,使學生獲得成功的體驗,增強學習的自信心。
3、讓學生在多層練習中鞏固深化。
在練習的設計上,力求緊扣重點,做到新穎、多樣、層次分明,有坡度。填空題第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3、4題是在第1、2題的基礎上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題是開放題,加深學生對分數的基本性質的認識,激發學生學習的興趣,活躍課堂氣氛。這樣不僅能照顧到學生思維發展的過程,而且有效拓寬了學生的思維空間,真正做到了學以致用。
反思教學的主要過程,覺得在讓學生用各種方法驗證結論的正確性的時候,拓展得不夠,要放開手讓學生尋找多種途徑去驗證。因為數學教學并不是要求教師教給學生問題的答案,而是教給學生思維的方法。
分數的基本性質教學設計13
教學目標:
1、讓學生理解和掌握分數的基本性質,知道它與整數除法中商不變性質之間的聯系。
2.根據分數的基本性質,學會把一個分數化成用指定的分母做分母或指定的分子做分子而大小不變的分數,為學習約分和通分打下基礎。
學習目標:
1、理解和掌握分數的基本性質,知道它與整數除法中商不變性質之間的聯系。
2、根據分數的基本性質,學會把一個分數化成用指定的分母做分母或指定的分子做分子而大小不變的分數
重點難點:
1、使學生理解分數的基本性質。
2、讓學生自主探索,發現和歸納分數的基本性質,以及應用它解決相關的問題。
過程設計:
一、激情導入
1、導入課題
生讀故事。
唐僧師徒四人在西天取經的路上得到了一個大西瓜,他們知道豬八戒想多吃。師傅說:“分給他二分之一,他嫌少,分給他四分之二,他還嫌少,之后師傅說分給他八分之四,這次豬八戒覺得已經很多了,高興得答應了。可是悟空卻在旁邊一個勁地笑,你知道孫悟空為什么笑嗎?
師:孫悟空為什么笑呢?二分之一、四分之二、八分之四這三個分數到底有什么關系呢?下面我們用折紙的方法來看一下它們之間有什么樣的關系?
2、明確目標
理解和掌握分數的基本性質,知道它與整數除法中商不變性質之間的聯系;并會應用分數的基本性質。
3、預期效果
達到教學目標
二、民主導學
任務一
任務呈現
動手操作驗證性質
自主學習
師:拿出準備好的三張正方形紙。按照下面的要求來進行操作。請一同學讀學習要求
1、把三張正方形紙平均對折一次、二次、三次,將紙平均分成2、4、8份,分別把2分之二、4分之二、8分之四涂上顏色,并標出二分之一、四分之二、8分之四。
2、仔細觀察三張紙的涂色部份,你們能發現什么?
師:同位分工合作完成。現在開始。
師選擇一份作品粘貼在黑板上,請一同學說一說你們有什么發現?
請二至三位同學說一說。
師:我們都發現了涂色部份的面積是相等的,那你們能不能把二分之一、四分之二、八分之四列成一個等式呢?
生回答。師:現在你們知道孫悟空為什么笑了嗎?請同學回答。
師:豬八戒每次分到的都是一樣多的。它還以為啊,開始分得少,后來分得多。不過豬八戒也許也正納悶呢?這幾個分數的分子和分母各不一樣,那它們的大小怎么會一樣呢?你們想幫豬八戒解決這個問題嗎?(想)
下面請同學們把這個式子從左往右地觀察,看一下每個分數的分子分母怎樣變化?才得到下一個分數。
生:我發現了二分之一的分子與分母同時乘以2得到了四分之二、四分之二的分子和分母同時乘以2得到了八分之四。
請二名同學重復。
師:你們想得一樣嗎?我把二分之一的分子分母同時乘2得到了四分之二、四分之二的分子和分母同時乘2又得到了八分之四。那在這個式子中我們是把分子分母同時乘2,分數的大小不變,那如果我們把分數的分子分母同時乘5分數的大小變嗎?同時乘以10呢?那你們能不能根據這個式子來總結一個規律呢?
生回答:一個分數的分子分母同時擴大相同的倍數,它們分數的大小不變。
請一至二名同學回答。
師板書:分數的分子分母同時乘相同的數,分數的大小不變。
師:誰來舉一個例子。指名三位同學回答,師板書,并問:同時乘以了幾?
師:這樣的例子我們可以舉出很多很多,剛才我們是從左往右觀察的,如果把這個式子從右往右觀察,你們又會發現什么呢?
請一同學回答,
生:我們發現了8分之四的分子與分母同時除以2得了四分之二,四分之二的.分子與分母同時除以2得到了二分之一。
師:嗯,分數的分子分母同時除以2分數的大小不變,如果同時除以4大小會變嗎?同時除以5呢?能不能根據這個式子再總結出一句話呢?
生:分數的分子分母同時除以相同的數,分數的大小不變。 (二名學生重復)
師板書:或者除以
師:你能根據剛才總結的規律舉一個例子嗎?
讓三名學生舉出例子,師板書。并問:分子分母同時除以了幾?
展示交流
師指著板書說明:我們說分子分母同時乘或除以相同的數,分數的大小不變,那是不是包括所有的數呢?我們一起來看這樣一個分數。板書八分之四同時除以0,問:這個式子成立嗎?(打上問號)
生:不成立,
師:為什么
生:因為0不能作除數,
師:0不能作除數,所以這個式子是錯誤的。(畫叉)
師:我再說一個式子,我不除以0了,我乘以0,這個式子成立嗎?(板書:8分之四乘以0,打上問號)
生:不成立,因為在分數當中分母相當于除數,除數不能為0。
師:對,大家都知道0不能作除數,所以這兩個式子都是不成立的?(畫叉)我們剛才總結的分數的分子分母同時乘或者除以相同的數,不是所有的數需要加上一句什么話
生:0除外
師板書0除外
師:到現在為止這個規律我們就總結完了,那在這個規律里你覺得什么地方需要我們注意一下呢?
生:同時和相同的數
師:“同時”和“相同的數”(師將重點詞語打點),大家想得一樣嗎?這個就是我們今天這節課要學習的分數的基本性質。(師板書課題)
師:我相信如果當時豬八戒會這個分數的基本性質,那就不會出現這樣的笑話了,那咱們同學們千萬不要范它那樣的錯誤了。下面讓我們一起把分數的基本性質邊讀邊記。
生齊讀二遍。
師:這個分數的基本性質特別有用,我們可以根據分數的基本性質把一個分數化成和它相等的另外一個分數。
任務二
任務呈現
課本76頁的例2,請一同學讀題。
自主學習
生獨立完成,完成后和同位的同學說一說你是怎樣想的。
展示交流
每題請二名同學回答,(集體訂正答案)
檢測導結
1、目標練習
76頁“做一做”
練習十四的1、2、6、7題
2、結果反饋
生做完后同桌交流,再指名說說結果。
3、反思總結
今天這節課你都學會了哪些知識?請大家談談學習了分數的基本性質的收獲。
三、輔助設計
教具課件設計
小黑板正方形紙數塊
板書設計
分數的基本性質
練習和作業設計
1、完成課本76頁做一做中的1、2題。
生獨立完成,師指名回答。
2、完成練習十四中的1、2、5、6、7題。
師小結:這節課我們學習了分數基本性質,而且我們還學會了根據分數的基本性質把一個分數轉化成和它相等的另外一個分數,其實生活當中還有許多的數學知識,如果你留心觀察,你就能夠發現,我希望大家都能做一個在學習上面的有心人。
分數的基本性質教學設計14
教學目標
1、學生能理解和掌握分數的基本性質,知道分數的基本性質與整數除法中商不變的性質之間的聯系。
2、學生能運用分數的基本性質把一個分數化成分母不同而大小相等的分數。
3、培養學生觀察、比較、抽象概括的邏輯思維能力,滲透“事物之間是相互聯系的”辯證唯物主義觀點。
教學重、難點:
理解分數基本性質的含義,掌握分數基本性質的推導過程。運用分數的基本性質解決實際問題。
教學過程:
一、復習舊知,了解學習起點
二、創設情境,激趣引入
課件動畫顯示:藍貓、菲菲、霸王龍最喜歡吃淘氣做的餅。有一天淘氣做了3塊大小一樣的餅分給藍貓、菲菲、霸王龍。藍貓說:“我功勞最大,我要吃一大塊。”菲菲說:“我要吃兩塊。”霸王龍搶著說:“我個頭最大,我要吃3塊。”淘氣想了想便動手切餅滿足了他們的要求,并向他們提問:“剛才,我把3個同樣大小的餅,平均分成2份、4份、6份,分別給了你們1塊、2塊、3塊,你們知道誰吃的多嗎?”淘氣的問題,立刻引起了他們的爭論。同學們,你們知道他們誰吃得多嗎?
三、探究新知,揭示規律
1.動手操作,形象感知。
(1)折。請學生拿出3張同樣大小的圓形紙,把每張圓形紙都看做單位“1”,用手分別平均折成2份、4份、6份。
(2)畫。在折好的圓形紙上,分別把其中的1份、2份、3份畫上陰影。
(3)剪。把圓中的陰影部分剪下來。
(4)比。把剪下的陰影部分重疊,比一比結果怎樣。
2.觀察比較,探究規律。
(1)通過動手操作,誰能說一說動畫片中藍貓、菲菲、霸王龍各吃了一個餅的幾分之幾?(板書。)
(2)你認為他們誰吃的多?請到講臺上一邊演示一邊講一講。
學生匯報后,教師用電腦演示。
把3塊同樣大小的餅分別平均分成2份、4份、6份,依次表示。把平移、重疊,明顯地看出塊餅、塊餅、塊餅大小相等。通過分餅、觀察、驗證得出結論:“藍貓、菲菲、霸王龍分的餅一樣多。”
(3)既然他們3個吃的同樣多,那么、的大小怎樣?我們可以用什么符號把他們連接起來?(板書。)
(4)聰明的淘氣是用什么辦法既滿足藍貓、菲菲、霸王龍的.要求,又分得那么公平呢?這就是我們今天研究的內容“分數的基本性質”。(板書課題。)
(5)這3個分數的分子、分母都不同,為什么分數的大小卻相等?你們能找出它們的變化規律嗎?請同學們4人為一組,討論這幾個問題。(課件出示討論題。)
討論題:
①它們之間有什么關系?它們的什么變了?什么沒有變?
②從左往右看,是按照什么規律變化的?從右往左看,又是按照什么規律變化的呢?
(6)學生匯報,師生討論情況。
師:這3個分數是相等的關系。可以寫成,它們的分子、分母變了,而分數的大小沒有變。
師:從左往右看,由得到,是把的分子、分母都乘以2,也就是把分的份數和表示的份數都擴大2倍,就得到。同理的分子、分母都乘以3,就得到,而分數的大小不變。(板書:都乘以相同的數。)
從右往左看,分數的分子和分母又是按照什么規律變化的?通過分析,比較,,得出:分數的分子和分母都除以相同的數,分數的大小不變。
(7)抓住焦點,辨中求真。
的分子、分母能否同時乘以或者除以零呢?圍繞這個問題展開討論、辯論。通過討論、爭辯,使學生認識到“因為分數的分子、分母都乘以0,則分數成為”。
分數的基本性質教學設計15
教學目標:
情感態度:培養學生觀察、比較、抽象、概括的邏輯思維能力,并且滲透事物間相互聯系,發展變化的辯證唯物主義觀點。
知識技能:理解分數的基本性質,并且能夠靈活應用。
過程方法:動手操作、觀察、討論
教學重、難點:理解并掌握分數的基本性質并靈活應用。
教具準備:自制多媒體課件、圖(2組)、拼圖畫一幅、實物投影儀。
學具準備:拼圖12組。
教學設計理念:
《新課標》要求,讓學生在動手操作中觀察、思考,在生動具體的情境中學習數學,參與知識的發現過程。在教學分數的基本性質時,選擇了學生喜聞樂見的游戲形式,在學生人人參與的教學情境中,讓學生發現問題——討論問題——解決問題。力求通過學生動手實踐,自主探索和合作交流的學習方式,新知識的教學,訓練學生思維,引導學生把所學數學知識應用于實際中。感受數學的價值,本課設計完全從學生發展為本,在教學中大膽的把課堂還給學生,讓學生成為課堂真正的主人。
教學過程:
一、 創設情境,激趣導入。
設計意圖:讓學生在喜聞樂見的游戲情境中,以濃厚的'興趣參與學習,激發學生探索數學問題欲望,并訓練學生小組合作學習的方法和習慣。
師:請看這幅拼圖漂亮嗎?老師這還有三幅漂亮的圖片(投影展示)可愛的青蛙,朝氣彭勃的太陽,誘人的蘋果,用你們靈巧的雙手能不能把他們拼出來?請小組合作完成。同學們,準備好了嗎?我宣布:拼圖比賽現在開始。
請看拼圖要求:1、用所給材料拼成三個完全一樣圖形。
2、用分數表示陰影部分占整幅圖的幾分之幾,并寫出來。
二、合作交流,探究規律。
設計意圖:讓學生在具體的情境中充分利用現有資源,增強學生的學習興趣,既有張揚個性的獨立思考,又有發揮集體力量的小組合作學習,培養學生敢于探索的精神與大膽嘗試的能力,同時讓學生選擇自己喜歡的方式,既尊重了學生,又激發了學生的學習興趣,體現了主體性。
(一)拼圖,寫分數。
(1)教師組織小組活動,并巡視,參與,指導小組活動。學生拼好圖后寫出分數。
(2)匯報優勝組介紹經驗,并展示作品。(體會小組合作的有效性)教師貼圖并板書分數。( = = )
(二)找分數間的大小關系。
(1)師:請同學們用自己喜歡的方法找一找每組中三個分數的大小關系,學生獨立思考后與同桌交流方法。
(2)匯報:每組中三個分數大小相等。
比較方法。(1)看圖比較(2)化小數比較(3)利用商不變的性質比較(4)……
(三)探究規律
(1)每組中三個分數看似不同,實質大小相等,它們之間到底有什么聯系?小組討論探究規律。
(2)交流自己的發現。①每組中三個分數平均分的份數不同取的分數也不同?②分子,分母都擴大了2倍(3倍)③……
(3)師:分數的分子和分母怎樣變化時,分數的大小才會不變,學生自由發言,教師給予肯定和鼓勵。
(4)師結合圖依據分數的意義講解變化規律。
(5)小結分數的基本性質:強調“相同”“同時”組織討論:“相同的數”可以是哪些數?
(四)對比分數的基本性質和商不變的性質。
學生對比,說出兩個性質間的區別與聯系。
三、應用。
設計意圖:本環節所設計是由易到難,緊扣本課的重難點,練習具有針對性、實用性、開放性。通過變式練習讓學生的思維得到訓練,激發探究熱情,培養創新能力。
1、填空
(1)學生獨立思考。(2)交流口答,并說明依據,同時訓練學生應用所學知識解決實際問題的能力。
2、比較 和 的大小。
四、游戲"找朋友”。
設計意圖:游戲的情境,形式活潑,讓學生通過大小相等的分數找到自己的朋友。游戲規則新穎而恰當,既鞏固新知又體會到數學與生活的密切聯系。
同學們拿出課前老師發給你的紙,紙上所寫分數大小相等的同學,你們是“好朋友”。請學生讀自己的分數,與他所讀分數大小相等的同學舉起來確定后手拉手離場。
,五年級數學分數的基本性質教學設計
【分數的基本性質教學設計】相關文章:
分數的基本性質教學設計08-11
分數的基本性質教學設計05-30
《分數的基本性質》教學設計優秀05-09
分數的基本性質教學設計15篇06-25
分數的基本性質教學設計15篇(優)08-11
(優)分數的基本性質教學設計15篇08-25
[精品]分數的基本性質教學設計15篇08-25
分數的基本性質教學設計錦集(15篇)08-11
比的基本性質教學設計06-27