- 相關推薦
《分數的基本性質》教學設計優秀
作為一名為他人授業解惑的教育工作者,就不得不需要編寫教學設計,教學設計是根據課程標準的要求和教學對象的特點,將教學諸要素有序安排,確定合適的教學方案的設想和計劃。那么你有了解過教學設計嗎?下面是小編幫大家整理的《分數的基本性質》教學設計優秀,歡迎大家分享。
《分數的基本性質》教學設計優秀1
《分數的基本性質》它是在學生已掌握了商不變的性質之后,并在已有應用經驗的基礎上進行的。《分數的基本性質》在分數教學中占有重要的地位,它是約分,通分的依據,對于以后學習比的基本性質也有很大的幫助,所以,分數的基本性質是本單元的教學重點之一。我在設計這節課時,大膽利用猜想和驗證方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到不僅是數學知識,更主要的是數學學習的方法,從而激勵學生進一步地主動學習,產生我會學的成就感。對這部分內容我是這樣設計教學的:
一、遷移引入,溝通新舊知識的聯系。
學習分數的基本性質可以利用商不變的性質進行正遷移,所以我在復習環節時出示:124=3 12040=3 1200400=3,問:觀察這三道算式,你回憶起以前學過的什么規律?根據除法和分數的關系,猜猜看分數也有這樣的規律嗎?幫助學生意識到商不變規律與新知識的學習具有定的聯系,為新知識的學習奠定基礎。
二、用故事情景引入,增強解決問題的現實性。
教學一開始,就以一段故事《三個和尚分餅》引入課題,這樣不僅激發了學生的學習興趣,更調動了學生的求知欲望,充分運用了猜測和情景引入等方式,吸引學生主動參與到對新知識的探究過程中,把抽象的分數基本性質具體化了。然后,我抓住分數基本性質的本質屬性,通過讓學生動手操作來發現三個分數之間的相等關系,接著引導學生一起探索這三個分數之間存在的規律,從而把具體的知識條理化,歸納得出分數的基本性質,讓學生參與學習的全過程,在掌握所學知識的.同時獲得成功的體驗。當總結出規律后再提出為什么這里的相同數不能為零,并通過商不變性質的性質、分數與除法的關系,使學生全面理解掌握分數的基本性質。在教學中我還注意關注學生的多種思維方式,鼓勵學生用自己的語言敘述解決問題的過程,體現了對學生觀察能力、動手操作能力、邏輯思維能力和抽象概括能力的培養。
三、運用知識,解決實際問題。
先進行基本練習,深化對分數的基本性質認識,通過應用拓展,使學生加深對分數的基本性質的理解,如游戲:老師寫一個分數,你能寫出和老師相等的分數?你能寫幾個?寫的完嗎?在寫的時候,你是怎么想的?1/a=7/b(a和b是不為0的自然數),當a=1、2、3、4的時候,b分別=?a和b為什么有怎樣的關系?為什么有這樣的關系呢?并培養學生運用所學的知識解決實際問題的能力。本節課出現的問題也很多,如在進行分數的基本性質與商不變的規律的溝通聯系時,只是對照兩句性質進行,沒有舉出具體的例子,如果能有把這兩個規律之間的轉化采用舉例、填空的形式,能給學生以直觀的體驗,勝過用語言的描述。
《分數的基本性質》教學設計優秀2
教學目的
1.使學生理解和掌握分數的基本性質.
2.培養學生觀察、思考、動手操作和自學能力.
教學過程
一、導入新課.
故事引入:中秋節,媽媽買了一個大西瓜,分給哥哥這個西瓜的 ,(板書: ).
分給組組這個西瓜的 ,(板書: ).分給弟弟這個西瓜的 ,(板書: ).哥哥、姐姐、弟弟三個人,他們誰吃的西瓜多呢?(學生答案不一)
到底誰回答得對呢?上完這節課你們一定能得到準確的答案.
二、新課.
1.實際操作列等式證實兩組分數,每組分數大小相等.
(1)教師講解:請同學們拿出三個大小相等的圓來,分別用陰影部分表示每個圓的
.(板書: )
(2)教師提問:比較一下陰影部分的大小,結果怎樣?
陰影部分相等,說明這三個分數怎樣?
(隨著學生回答老師將三個分數用“=”連接)
(3)教師拿出畫著三條數軸的小黑板,講:誰能在三條數軸上標出 ?
(4)教師提問:這三個分數在數軸上所表示的長度怎樣?這又說明了什么?
(隨著學生回答老師在三個分數間用“=”連接)
2.初步概括分數基本性質.
(1)觀察兩個等式,每個等式的三個分數什么變了?什么沒變?
(2)同學們從左到右觀察第一個等式,想一下,這三個分數的分子、分母怎樣變化才保證了分數的大小不變.
板書:
(3)誰能用一句話把這個變化規律敘述出來?
板書:分數的分子、分母都乘上同一個數,分數大小不變.
(4)從左到右觀察第二個等式,這三個分數的分子、分母發生了怎樣的變化,才保證了分數大小不變呢?
板書:
(5)問:誰能用一句話把這個變化規律敘述出來?
誰能用一句話把這兩個變化規律敘述出來?
(板書:或除以)
3.完整分數基本性質.
填空:
教師追問:第三題( )里可以填多少個數?第4題呢?
為什么3、4題( )里可以填無數個數?
( )里填任何數都行嗎?哪個數不行?(板書:零除外)
這里為什么必須“零除外”?
教師小結:我們總結的分數的這個變化規律就是“分數的基本性質.
(板書課題:分數基本性質)
4.深入理解分數基本性質.
教師提問:分數的基本性質里哪幾個詞比較重要?
為什么“都”和“相同”很重要?
為什么“分數大小不變”也很重要?
為什么“零除外”也很重要?
三、課堂練習.
1.用直線把相等的`分數連接起來.
2.把下列分數按要求分類.
和 相等的分數:
和 相等的分數:
3.判斷下列各題的對錯,并說明理由.
4.填空并說出理由.
5.集體練習.
四、照應課前談話.
問:現在誰知道哥哥、姐姐、弟弟三個人,誰吃的西瓜多呢?
板書:
五、課堂小結.
這節課你有什么收獲?
六、布置作業.
1.指出下面每組中的兩個分數是相等的還是不相等的.
2.在下面的括號里填上適當的數.
《分數的基本性質》教學設計優秀3
教學內容:人教版小學數學第十冊第75頁至78頁。
教學目標:
1、通過教學使學生理解和掌握分數的基本性質,能利用它改變分數的分子和分母,而使分數的大小不變。
2、培養學生的觀察能力、動手操作能力和分析概括能力等。
3、讓學生在學習過程中養成互相幫助、團結協作的良好品德。
教學準備:
課件、長方形紙片、彩筆。
教學過程:
一、創設情境,憶舊引新
孫悟空師徒四人來到一個小國家————數學王國,豬八戒肚子很餓, 悟空就對八戒說:“我給你10塊餅,平均分2天吃完,怎么樣?”八戒一聽嚷道:“太少了,猴哥欺負我。”悟空眼睛一動說道:“那我就給你100塊餅,平均分20天吃完,可以了吧。”八戒一聽就樂了:“太好了!太好了!這回每天我可以多吃些了!”
同學們,你們認為八戒說得有道理嗎?(沒道理)
【通過學生耳熟能詳的人物對話,給學生設計一個懸念,抓住學生的好奇心理,由此激發學生的學習興趣。】
為什么?用你們的數學知識幫他解決一下吧。(學生立式計算)
先算出商,再觀察,你發現了什么?
被除數和除數同時擴大(或縮小)相同的倍數,商不變。
同學們,再想一想除法與分數有什么關系,并完成這些練習吧。
8÷15= 3÷20= 14÷27=
二、動手操作 、導入新課
同學們對知識掌握的真不錯,為了表揚你們,我決定找三個同學來與我一同分享一個兌現。(拿出準備好的長方形紙片。)
我們把三張紙片看成三塊餅,大家比比看,每人的三塊餅大小相等嗎?請拿出第一塊餅,我想與你每人一塊,而且大小要是一樣,你能做到嗎?你給我的為什么是這塊餅的一半呢?用分數怎么表示呢?
我想與你每人兩塊,而且大小要一樣大,你又能做到嗎?用分數怎樣表示呢?
我如果想我想與你每人四塊,你還能做到嗎?這次用分數又該怎樣表示呢?這三個分數大小相等嗎?為什么呢?這節課,我們就來研究這個數學問題。
【通過學生的動手操作,初步感知三個分數的大小相等,為尋找原因設置懸念,再次激發學生的學習興趣。】
三、探索分數的基本性質
你們三次給我的餅大小相等嗎?那么這三個分數大小怎樣?可以用怎樣的式子表示?( )
1、觀察一下這個式子,3個分數有什么不同?有什么地方相同?分數的'大小為什么會不變呢?要弄清楚這個問題,我們必須先觀察分數的分子、分母是怎樣變化的。你們能從商不變的規律,分數與除法的關系中找出它們的變化規律嗎?
2、學生交流、討論并匯報,得出初步分數的基本性質。
分數的分子、分母同時乘以或除以相同的數,分數的大小不變。
3、將結論應用到
(1)先從左往右看, 是怎樣變為與它相等的 的?分母乘2,分子乘2。
(2)由 到 ,分子、分母又是怎樣變化的? (把平均分的份數和取的份數都擴大了4倍。)
(3)是怎樣變化成與之相等的 的?
(4)又是怎樣變成 的?(把平均分的份數和取的份數都縮小了4倍。)
4、綜合以上兩種變化情況,誰能用一句話概括出其中的規律?你覺得有什么要補充的嗎? (不能同時乘或除以0)為什么?
5、這就是今天我們所學的“分數的基本性質”(板書課題,出示“分數的基本性質”)。學生讀一遍,你認為哪幾個字特別重要?(相同的數、0除外)相同的數,指一些什么數?為什么零除外?
四、知識應用(你知道,阿凡提為什么會笑嗎?他對三兄弟講了哪些話?)
有位老爺爺把一塊地分給三個兒子。老大分到了這塊地的 ,老二分到了這塊地的 。老三分到了這塊的 。老大、老二覺得自己很吃虧,于是三人就大吵起來。剛好阿凡提路過,問清爭吵的原因后,哈哈的笑了起來,給他們講了幾句話,三兄弟就停止了爭吵。
分數的分子和分母同時乘或者除以相同的數,分數的大小不變。( )
分數的分子和分母同時乘或者除以一個數(零除外),分數的大小不變。( )
分數的分子和分母同時乘或者除以相同的數(零除外),分數的大小不變。( )
⒍小結。
從判斷題中我們可以看出,分數的基本性質要注意什么?學到這兒,大家想一想,我們以前學過的什么性質跟分數的基本性質類似?誰能用整數除法中商不變的性質來說明分數的基本性質?
【此過程主要由學生通過觀察、比較,得出這三個分數大小相等的規律,由此牽引到其他的有同等規律的分數中,從而引出分數的基本性質:分子、分母是同時變化的,是同向變化的(是擴大都擴大,是縮小都縮小),是同倍變化的(擴大或縮小的倍數相同)。只有這樣變化,分數的大小才不會變。】
五、鞏固練習
⒈卡片練習:
⒉做P96“練一練”1、2。
⒊趣味游戲:
數學王國開音樂會,分數大家族的節目是女聲大合唱,只有幾分鐘就要演出了,請大家趕緊幫合唱隊的成員按要求排好隊。
要求:第一排是分數值等于 的,第二排是分數值等于 的,還有一位同學是指揮,他是誰?你是怎樣想的?
【通過練習,讓學生加深對分數的基本性質的理解,為下節課分數的基本性質的應用打好堅實的基礎。】
六、課堂總結
這節課你學到了什么?什么是分數的基本性質?你是怎樣理解的?
七、布置作業
做P97練習十八2。
【《分數的基本性質》教學設計優秀】相關文章:
分數的基本性質教學設計05-30
分數的基本性質教學設計15篇06-25
分數的基本性質說課稿優秀03-28
比的基本性質教學設計06-27
分數基本性質說課稿02-09
《分數的基本性質》說課稿12-14
比例的基本性質教學設計06-04
分數的基本性質說課稿范文04-18
分數的基本性質說課稿(精選20篇)09-01
分數的基本性質說課稿(精選12篇)07-15